Cambridge O Level

PHYSICS 5054/21

Paper 2 Theory
May/June 2021
MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {™ }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.

2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.

3 Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).

4 The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 'List rule' guidance

For questions that require \boldsymbol{n} responses (e.g. State two reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked ignore in the mark scheme should not count towards \boldsymbol{n}.
- Incorrect responses should not be awarded credit but will still count towards \boldsymbol{n}.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should not be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response.
- Non-contradictory responses after the first \boldsymbol{n} responses may be ignored even if they include incorrect science.

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, unless the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^{n}$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations
Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.
State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

Examples of how to apply the list rule

State three reasons... [3]

| A. Correct | \checkmark | |
| :--- | :--- | :--- | :--- |
| $\mathbf{2}$ 2. Correct | \checkmark | |
| | \mathbf{x} | |

B (4 responses)	1. Correct, Correct	\checkmark, \checkmark	
	2. Correct	\checkmark	
	3. Wrong	ignore	

\mathbf{C}	(. Correct	\checkmark	
(4 responses)	2. Correct, Wrong	\checkmark, \mathbf{x}	$\mathbf{2}$
	3. Correct	ignore	

E
(4 responses)

1. Correct	\checkmark	
2. Correct	\checkmark	3
3. Correct, Wrong	\checkmark	

Question	Answer	Marks
1(a)	scale vector diagram showing $12 \mathrm{~N}, 36 \mathrm{~N}$ and correct resultant force in correct direction	B1
	$38 \pm 1 \mathrm{kN}$	B1
	$018 \pm 3^{\circ}$	B1
1(b)(i)	(only in uniform acceleration) same increase / change in speed / velocity or has a constant acceleration or speed-time graph is a straight line	B1
	(only in uniform acceleration) same increase / change in speed / velocity in same time (period) or same rate of change of speed / velocity (with time) or change in speed / velocity is proportional to time	B1
1(b)(ii)	($a=$) F/m in any way, algebraic or numerical	C1
	0.63-0.66 m / s ${ }^{2}$	A1

Question	Answer	Marks
$2(\mathrm{a})$	dull black line 100	B1
	dull white 60 and shiny white 40	B1
$2(\mathrm{~b})$	hot air rises	B1
	density of hot air less (than cold air) or air expands on heating	B1
	hot air rises and cold air falls or a complete current described	B1

Question	Answer	Marks
3(a)	($E=$) mcT in any form algebraic or numerical	C1
	$2 \times 460 \times 450$	C1
	$4.1 \times \times 10^{5} \mathrm{~J}$	A1
3(b)(i)	any one of: - boiling occurs at one temperature / boiling point or evaporation occurs at any temperature / below boiling point - boiling occurs within liquid or evaporation occurs on the surface - evaporation increased by draughts, more surface area (and boiling does not)	B1
3(b)(ii)	(average) speed / K.E. of molecules decreases (as temperature falls) or (molecules) do not have the energy to escape / break bonds	B1
	fewer fast / energetic molecules escape or (only) fastest / high KE molecules escape	B1

Question	Answer	Marks
4(a)(i)	Fig.4.1 transverse and Fig.4.2 longitudinal	B1
4(a)(ii)	wave drawn with larger wavelength	B1
4(a)(iii)	backwards and forwards, left and right, to and fro, vibration parallel to arrow / direction of wave (movement)	B1
$4(\mathrm{~b})$	frequency	B1
	ultrasound	B1
	gamma	B1

Question	Answer	Marks
5(a)	convex or converging	B1
5(b)	as it enters - refracts (towards normal) or changes speed	B1
	as it leaves, one of: - bends / refracts away from normal - speed increases - wavelength increases - emerges parallel to the (principal) axis	B1
5(c)	either emergent ray R or the ray through F extended to the left of the lens	B1
	both ray through F and R shown and image marked at intersection of extended rays	B1
5(d)	upright and virtual	B1

Question	Answer	Marks
6(a)	bar cuts magnetic field (lines / flux) or change in magnetic flux (in circuit with ammeter)	B1
	emf or current induced	B1
	negative (small)	B1
	no reading	B1
	no reading	B1
6(c)	move bar faster or wider magnet	B1
6(d)	force downwards (caused by current in magnetic field) or force opposes movement $/$ motion	B1

Question	Answer	Marks
7(a)	lower temperature / cooling of thermistor	B1
	less light on LDR	B1
7(b)(i)	energy / work per unit charge	B1
7(b)(ii)	Any 2 from: - voltage across diode - voltage across ammeter - voltage across internal resistance (of battery) - (e.m.f. / voltage of battery =) $5.4+0.6$ (or larger)	B2
7(b)(iii)	($E=$) VQ or VIt in any form algebraic or numerical	C1
	3200 J	A1
7(b)(iv)	no current/no ammeter reading and diode has been reversed / diode does not conduct / has (very) high resistance / blocks current / reference to current/voltage graph	B1

Question	Answer	Marks
8(a)(i)	weight of horse in mid-section of horse and labelled	B1
	force upwards on at least two legs and labelled	B1
	force downwards on saddle area labelled F	B1
8(a)(ii)	forces equal and opposite	B1
	acts on rider (upwards from horse)	B1
8(b)(i)	cross at centre of left-hand fence	B1
	cross at centre of right-hand fence and lower than for right-hand fence	B1

Question	Answer	Marks
8(b)(ii)	does not topple / falls back as fence tilts / rotates / turns / changes angle or turns to larger angle / needs more force before toppling or centre of mass is lower	B1
	(low angle of tilt) centre of mass still inside / above base or weight turns fence back if tilted	B1
8(c)(i)	K.E. $=1 / 2 m v^{2}$ in any form algebraic or numerical	C1
	$v^{2}=2 \times 4000 / 520 \text { or } v=\sqrt{\frac{2 \times 4000}{520}}$	C1
	$3.9 \mathrm{~m} / \mathrm{s}$	A1
8(c)(ii)	($h=$) P.E. / mg in any form algebraic or numerical	C1
	$3000 /(10 \times 520)$ or 0.58 m	C1
	2.0 m	A1

Question	Answer	Marks
$9(\mathrm{a})$	correct symbol for lamp	B1
	correct symbol for voltmeter placed across lamp	B1
	correct symbol for variable resistor in series with lamp and battery or used as a potential divider	B1
	start on 10 A scale (and lower if reading small) or uses 10 A scale for points from 1 to 1.8 A or uses 10 A scale for voltages above 2 V (and for 2 V$)$	B1
	for lower readings switch to (0-) 1 A scale	B1

Question	Answer	Marks
9(c)	graph curved or not a straight line (through origin) or current not (directly) proportional to voltage	B1
9(d)(i)	$(R=) V / I$ in any form algebraic or numerical	C1
	at 0.40 V , resistance $=0.80(\pm 0.03) \Omega$	A1
9(d)(ii)	at 6.0 V , resistance $=3.3-3.4 \Omega$	B1
9(e)(i)	temperature not constant/increases	C1
	resistance increases as temperature increases	A1
9(e)(ii)	(resistance is directly) proportional to length	B1
	(resistance is) inversely proportional to area or proportional to 1 / area	B1
9(e)(iii)	any clear use of proportionality using 0.80Ω	B1
	0.050 m	B1

Question	Answer	Marks
$10(\mathrm{a})$	alpha positive (+2)	B1
	alpha stopped by paper or thin metal or $3-10 \mathrm{~cm}$ air	B1
	beta electron	C1
	gamma electromagnetic (wave / particle)	A1
	gamma no charge	C1
gamma not stopped (easily) or stopped by a few cm of lead or stopped a few metres of concrete	A1	

Question	Answer	Marks
10(b)(i)	(nuclei / atoms with) same number of protons (in nucleus)	B1
	different number of neutrons	B1
10(b)(ii)	ionisation or can penetrate (through air/boxes) or has high energy	B1
	stopped by box / (air-tight) bag, instruments or stopped by air	B1
10(b)(iv)	decays too quickly or has to be replaced often	B1
10 (c)(i)	(alpha) repelled by nucleus	B1
	alpha and nucleus are positive	B1
10 (c)(ii)	most of an atom is empty space / nucleus is only a small part of atom	B1
	alpha particle rarely passes close to nucleus	

